
Future Generation in Distributed Systems Journal Vol. 5, No. 2, 2023

15

Review of some load balancing algorithms in fog computing

Zeinab Haghbayan1, Shiva Razaghzadeh1

Department of Computer Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran

Email: haghbayan.iauard@gamil.com (Corresponding author)

Email: Shiva.razzaghzadeh@gmail.com

Received: 10 Apr 2023 Revised: 5 May 2023 Accepted: 30 May 2023

ABSTRACT:

Fog computing is a new model in which computing resources are transferred from data centers to network edges. In

fact, it is the same as cloud computing, but with the difference that due to the higher speed of information transfer, it is

also used in technologies such as the Internet of Things. Load balancing is an important issue in fog computing. It

should be noted that one of the most important challenges in achieving load balancing is resource management and

proper scheduling. In fact, due to the existence of a large number of resources and the heterogeneous nature of these

resources and environment, how to manage these resources and assigning task to each resource so that the number of

tasks in the resources to be equal, is one of the most important reasons for examining load balancing algorithms. With

extensive research, more effective solutions will be provided. In this paper, we introduce, compare, and evaluate some

load balancing algorithms. Also, we will examine solutions for achieving load balancing using load balancing

algorithms.

KEYWORDS: Fog computing, load balancing techniques, load balancing algorithms.

1. INTRODUCTION

Fog computing is a decentralized computing

infrastructure in which all components, including

storage, computation, data, and applications are

efficiently and logically located between the cloud and

the data source. In fact, by using the fog computing

model, users can purchase their required services from

the provider and also benefit from upgrading and

maintenance systems. In the fog environment, the

computational core is located in a local network or

LAN, and the data is sent from end points or users to

the fog gateway. Load balancing algorithms in fog

computing offer benefits such as reducing traffic

congestion on network nodes, creating an optimized

task allocation schedule, faster access speed, better

bandwidth utilization, cost reduction, high operational

capacity, and improved computational reliability [1,2].

Load balancing plays a crucial role in fog computing,

since due to the numerous resources, tasks, and large

volume of requests, load balancing is necessary. This is

ensured by using load balancing algorithms, which

increase load balancing, efficiency optimization,

reliability and network capacity. Load balancing also

performs various actions such as sending distributed

client requests to different networks, monitoring the

load passing through multiple active servers, ensuring

high availability, and providing flexibility for added or

removed servers. Load balancing is used to enhance

responsiveness and the usability of applications. A load

balancer exists between the server farm and the client

that accepts incoming application traffic. The

application distributes the traffic among the support

group and services using different techniques [3].

In the following, we will examine and compare the

performance of load balancing algorithms, including

mailto:Shiva.razzaghzadeh@gmail.com

 Z.Haghbayan, Sh.Razaghzadeh Vol. 5, No. 2, 2023

16

fog computing and edge computing. We also examine

the features and structure of fog computing, the reason

for its need, the classification of architectural load

balancers, fog calculation and task scheduling methods

based on heuristic algorithms and evolutionary

algorithms. Heuristic algorithms and evolutionary

algorithms that have been studied in the background of

the studies include: round robin, ant colony

optimization, bee colony optimization, particle swarm

optimization, greedy algorithm.

In the following, we will examine and compare the

performance of load balancing algorithms, including

fog computing and edge computing. We will also

investigate the features and structure of fog computing,

the reasons for its necessity, the classification of

architectural load balancers, fog computation, and task

scheduling methods based on heuristic algorithms and

evolutionary algorithms. The heuristic algorithms and

evolutionary algorithms studied in literature review

include round-robin, ant colony optimization, bee

colony optimization, particle swarm optimization, and

greedy algorithm.

2. LOAD BALANCING IN FOG COMPUTING

2.1. PERFORMANCE OF FOG COMPUTING

The devices present in the fog are known as nodes. Any

device with network connection, computational and

storage capabilities can be a node that can be placed

anywhere with a network connection. Various devices,

from controllers to switches, routers, and video

cameras, can act as a fog node. These nodes can be

deployed in target areas such as offices or in a vehicle.

When an Internet of Things (IoT) device generates

data, these data can be received through one of these

nodes, processed within the network, and then

transferred to cloud data centers [4]. It is important to

note that fog networks complement cloud computing

and do not replace it. Fog has the ability to perform

short-term analysis at the edge, while the cloud, due to

its greater resources, is responsible for long-term

analysis.

Edge devices and sensors generate and collect data, but

sometimes they do not require the necessary resources

for computation, storage, and advanced analysis. In

such cases, fog computing is utilized. Although cloud

servers have the capability to perform these tasks, they

are often geographically located at a significant

distance, leading to latency issues. Moreover, sending

data from endpoints to the cloud requires an internet

connection, which can result in issues such as

decreased security, the risk of privacy breaches, and

legal problems. This is especially concerning when

sensitive data, subject to the regulations of different

countries, is being transmitted. Common fog computing

applications include intelligent networks, smart cities,

smart buildings, and vehicular networks and software-

defined networks (SDN) [1].

2.2. PERFORMANCE OF FOG COMPUTING

MODEL COMPARED TO EDGE COMPUTING

MODEL

The main idea behind fog computing compared to edge

computing is to increase the speed of processing

information. In general, data generated from the

Internet of Things (IoT) can be processed in three

locations: cloud data centers, network, or devices. In

the field of Internet of Things (IoT) technology, where

there is a vast amount of data that requires high

processing speed, performing data analysis at the

network or device level often results in superior

performance. Both fog computing and edge computing

technologies are closely linked to the cloud computing

environment, and their primary objective is to minimize

latency and maximize processing speed. Fog

computing and edge computing are both efficient in

enhancing the processing capability of data and

information in a local network. However, the main

difference between the two lies in the location where

data processing takes place. In edge computing, data is

processed directly on sensors that are physically close

to the source device, without the need to transfer the

data anywhere else. In fog computing, data is processed

in the network space before being sent to cloud data

centers [1]. Ultimately, both fog computing and edge

computing are dependent on cloud computing, and their

primary objective is to complement cloud computing

technology. The aim of implementing fog computing is

to bring fundamental analytical services to the network

edge. By bringing computing resources closer to the

required location, the distance that data needs to be

transferred is reduced. As a result, the system's

efficiency and performance is improved. Both fog

computing and cloud computing provide storage space,

applications, and data for users. However, fog

computing has a closer proximity to the end user and

has a wider geographical distribution. The foundation

of fog computing is identical to that of cloud

computing, with both relying on data, storage, and

applications without the limitations of a specific

physical location. By utilizing the fog computing

model, users have the ability to acquire the services

they require from providers, while also taking

advantage of upgrade and maintenance systems. Fog

computing differs from edge computing, with the

difference lying in where intelligence and

computational power are located. In the fog

environment, the computational core is located in the

local network (LAN), and data is sent from endpoints

to the fog gateway. Then, it is transferred to the desired

resources for processing. Edge computing is a subset of

fog computing, where the computational core and

power can be located at endpoints or the gateway. The

use of edge computing reduces the risk of failure

points. Because each device operates independently

and determines which data should be sent to the cloud

Future Generation in Distributed Systems Journal Vol. 5, No. 2, 2023

17

for analysis. The scalability of fog computing is greater

than that of edge computing, and it offers a wider

network perspective in comparison [1,2].

2.3. LOAD BALANCING AND THE REASONS

FOR ITS NECESSITY

The fog computing layer includes devices that have

lower storage and computational capabilities compared

to cloud data centers. The fog layer is responsible for

processing only the tasks that require immediate

processing, while other tasks are sent to the cloud data

centers. Sometimes, fog layers cannot handle a large

volume of user requests, which causes load imbalance.

Therefore, load balancing is required in order to

distribute the workload evenly across all resources in

the fog layer. The load balancer in the fog layer

receives user requests and analyzes virtual machines in

terms of their capacity and performance. If some virtual

machines are underloaded, tasks are taken from

overloaded virtual machines and assigned to

underloaded ones [5].

Fig1. Flowchart of Execution Flow in Energy-Aware Algorithm

2.4. LOAD BALANCING TECHNIQUES

Various techniques for traffic load balancing are listed

below:

 Centralized load balancing

In load balancing, there is a central node that manages

the distribution of workload across the fog nodes in a

distributed environment. Central nodes that store

information and status of each node can be easily

managed and repaired in case of failure.

 Distributed load balancing

This type of load balancing enables users to manage

network traffic in a fog computing environment. In

distributed load balancing, there is no central node that

manages the calculation of each node in a fog

environment. Instead, each node participates in the load

balancing mechanism and transfers the load to the

adjacent fog node. Decision making in such

environments is based on the node's own observations

and information about the system.

 Agent-based adaptive load balancing

Agent-based adaptive load balancing can be used for

load balancing in fog environments. This technique

enables maximum utilization of load-balanced server

clusters (farms). Moreover, by utilizing the information

obtained from the main server in the farm, it leads to an

improvement in the decision-making process for all

load balancing operations. All servers in the farm

report on the current load of the (load-balanced) server.

Then, the information is used to make decisions about

which server is suitable to handle the requests.

 Fixed weighting

In Fixed weighting load balancing algorithm, fog nodes

can be efficiently managed based on priority. In this

technique, each server receives weights, and requests

are routed to the server with the highest priority weight.

If the server is rejected with the highest priority, then

the server with the second priority will take over the

responsibility for providing the services.

 Z.Haghbayan, Sh.Razaghzadeh Vol. 5, No. 2, 2023

18

 Weighted Response Time

The aim of this technique is to minimize the maximum

response time of servers by distributing the load among

them based on their response time and weight. In this

technique, each server's weight is calculated based on

its response time, and tasks are assigned to servers with

lower weights to reduce their response time and

increase system responsiveness.

 Compatible Networking

This technique is often managed by a software-defined

networking (SDN) controller, which uses software

programs to send and receive data on a network. The

main objective of this technique is to create flexible

SDN network control that can improve traffic

management for network nodes. The ultimate goal is to

enable efficient responses to changing network needs.

 Minimum response time

The minimum response time technique is a commonly

used algorithm in load balancing that aims to distribute

incoming requests across multiple servers in a way that

minimizes the overall response time. This technique

works by identifying the server with the lowest

processing time and routing incoming requests to this

server. By doing so, the workload is evenly distributed

and requests are processed as quickly and efficiently as

possible, resulting in a seamless user experience. The

minimum response time technique is often used in

conjunction with other load balancing techniques to

optimize system performance and ensure that

applications can handle large volumes of traffic without

experiencing downtime or performance issues [3].

2.5. CLASSIFICATION OF LOAD BALANCER

BASED ON THEIR TYPE, ENVIRONMENTAL

QUALITY, AND POLICIES

Fig2.Classification of types of load balancers

1. cloud environment quality

 Static Environment:

This environment includes homogeneous

resources. The Round Robin algorithm is an

example of load balancing in a static environment.

 Dynamic Environment:

This environment includes heterogeneous

resources. The Load Balancing Min-Min

(LBMM) algorithm is an example of load

balancing in a dynamic environment.

2. Load Balancer

Load balancers can be based on hardware or

software. However, they are defined based on the

initial sender and receiver.

 Initial Sender:

A load balancer is started by heavily congested

centers. To this end, information related to the bulk

of data between different repositories is collected.

Then, simultaneously with displaying the remaining

Future Generation in Distributed Systems Journal Vol. 5, No. 2, 2023

19

ongoing tasks, the bulk of data is distributed among

less congested repositories.

 Initial receiver:

Load balancing begins with low-accumulation

centers that gather information about heavily-

accumulated centers and take over the task from

them.

 Symmetric:

Load balancing is accomplished through

coordination between the sender and receiver

depending on the conditions.

3. policies
Load Balancer are based on the following five

policies:

 Information Policy

Information policy specifies which data should be

collected from various centers and locations.

 Resource type policy

In this policy, resources are defined as either a

server or a recipient of a process, and they will be

displayed based on their accessibility.

 Location-based policy

This policy specifies which target centers need to be

selected for task transfer.

 Transfer policy

Transfer policy specifies that the task needs to be

selected by the neighboring center to be transferred

to a farther center.

 Selection policy

Selection policy defines what all processors need to

participate in the load balancing mechanism [3].

2.6. STRUCTURE AND CHARACTERISTICS OF

FOG COMPUTING

The load balancing framework in cloud computing,

presented in this section based on the cloud computing

environment, consists of three parts:

 The end-user layer

End users are directly in contact with the fog layer

and indirectly connected to the cloud layer through

the fog layer. These end users generate requests, and

these requests are directly transmitted to the fog

layer. After processing in this layer, the fog layer

immediately responds to the end users.

 Fog layer

In this method, all tasks reach their respective

processors on time and are executed in less time.

Additionally, the need for energy consumption of idle

virtual machines will be reduced. Therefore, load

balancing in the fog layer will help in diminishing

execution time, energy consumption, and

implementation costs. This layer includes a manager

who receives tasks from end-users. These tasks are

then assigned to the task scheduler based on the

principle of 'first-come, first-served'.

The scheduler assists in prioritizing task execution,

and load balancers subsequently take on the tasks and

allocate them to available virtual machines. If there is

an imbalance in the load on the virtual machines, the

load balancer retrieves tasks from overloaded virtual

machines and assigns them to less-loaded ones.

 Cloud Layer

This layer provides security for data and includes

large data centers with high storage and computing

capabilities. This layer offers a range of services,

including SaaS, IaaS, and PaaS [5].

Fig3. Load balancing framework for fog computing

[5].

2.1. LOAD BALANCING APPROACHES

UTILIZING LOAD BALANCING ALGOTITHMS

IN FOG COMPUTING

A lot of research has been done on how to balance the

workload in fog computing using different algorithms.

However, due to limited resources and information,

researchers may have difficulty understanding how

these techniques work and their underlying concepts.

 Scheduling Algorithm of minimum execution time -

minimum completion time

In this algorithm, tasks are assigned to resources that

have the minimum execution time. In other words,

tasks are assigned to resources that can provide the

minimum completion time. After a task is completed,

the availability time of the resource is updated. This

process is repeated sequentially until all desired tasks

are scheduled. The workflow of this algorithm starts

by selecting the smallest task and scheduling it, then

 Z.Haghbayan, Sh.Razaghzadeh Vol. 5, No. 2, 2023

20

proceeds to schedule the other tasks. The algorithm

operates based on considering the execution time,

completion time, and resource availability. The major

issue with this scheduling algorithm, is the uneven

distribution of workload on resources. The algorithm,

prioritizes the minimum completion time of a process,

thus scheduling tasks with the minimum completion

time first, which benefits short tasks. The main

advantage of this algorithm is its low response time [2].

 Scheduling Algorithm of Maximum execution time

- minimum completion time

This algorithm is similar to the Scheduling Algorithm

of minimum execution time - minimum completion

time, with the difference that among the unscheduled

tasks, the task with the longest execution time is

assigned to the resource with the minimum completion

time. In other words, longer tasks are scheduled first,

followed by shorter ones. This process continues until

all tasks are scheduled. This algorithm is used when

there are more short tasks than long tasks. The main

advantage of this algorithm is its simplicity in

implementation and its main drawback is creating

starvation for short tasks [2].

 Minimum Execution Time Scheduling Algorithm

This algorithm assigns the task to a resource that has

the minimum completion time. First, the task is added

to the list of unscheduled tasks, then a search operation

is performed to find the resource with the minimum

completion time. Finally, the task is assigned to the

resource that has the minimum completion time. This

algorithm significantly improves the maximum

completion time of tasks overall. However, maintaining

task and resource information calculated by the

scheduling system has a high cost. This algorithm tries

to ignore communication overheads in scheduling and

minimize the average completion time of tasks on

resources as much as possible. This approach has all

the advantages of minimum execution time algorithms

and fair load distribution, such as speed and creating a

balanced load on resources [6].

 Round-Robin Scheduling Algorithm

The round-robin scheduling algorithm defines a loop as

a queue and also defines a constant time quantum. Each

task can only be executed with this quantum in turn. If

a task is not completed in one quantum, it will return to

the queue and wait for the next turn. The main

advantage of this algorithm is that tasks are executed in

their own turn and there is no need to complete

previous tasks. Therefore, there is no hunger for other

tasks in this algorithm. However, if the queue is

completely filled or the workload is very heavy, a lot of

time is required to complete all tasks. In addition,

choosing a suitable time quantum for scheduling in this

algorithm is difficult. This round-robin algorithm

primarily focuses on the issue of fairness and justice

[7].

 Task scheduling algorithms inspired by

evolutionary algorithms

Typically, task scheduling algorithms do not consider

all user-specified parameters and constraints. This is

because considering all parameters and constraints

would be very time-consuming and unacceptable for

obtaining the optimal solution. Therefore, heuristic and

evolutionary methods are used to reach an optimal or

relatively optimal solution in a desirable time and under

acceptable conditions. In the following, we will discuss

some of these algorithms.

 Particle Swarm Optimization algorithm (PSO)

In PSO, a group of particles, each representing a

potential solution to the optimization problem, moves

through the solution space seeking the best solution. In

research conducted using this method in the field of

cloud computing scheduling, it has been concluded that

better results can be achieved with this method

compared to similar algorithms. This method focuses

on optimizing the completion time of tasks assigned to

cloud computing and does not consider its cost for the

user [8].

Fig4. Flowchart of Particle Swarm Optimization

Algorithm

 Task scheduling based on the genetic algorithm

Future Generation in Distributed Systems Journal Vol. 5, No. 2, 2023

21

The genetic algorithm is one of the evolutionary

optimization algorithm inspired by the process of

natural selection and genetics. The algorithm works by

maintaining a population of potential solutions,

evolving the population through selection, crossover,

and mutation operations, and selecting the best

solutions as the algorithm progresses. In the genetic

algorithm, time and cost have different weights. Each

configuration in the genetic algorithm corresponds to a

mapping from tasks to resources, which is a solution to

the scheduling problem. The goal of the genetic

algorithm is to minimize the fitted sums of time and

cost in scheduling. These two fitted sums are multiplied

by the average weights of time and cost for the tasks

present in the schedule. The time fitting is defined as

the maximum end time of activities for resources. The

activity time for each resource is the sum of the

completion times of the tasks in its queue, i.e., the sum

of execution time and time spent on scheduling tasks

for that resource. Cost fitting, is the total executing cost

of the tasks currently in the queue. Overall fitting" is a

combination of time fitting and cost fitting. This

algorithm has generated a practical scheduling solution

by adopting an evolutionary process to speed up

convergence and consequently reduce search time. The

main drawback of this approach is the high

computational cost [9].

 Ant colony optimization algorithm-based resource

scheduling strategy

In the ant colony algorithm, tasks are initially classified

based on QoS because the objective is customer

satisfaction. QoS has criteria such as completion time,

network bandwidth, reliability, and total cost incurred

to perform the task. After classification using

MapReduce technology, these processes are scheduled.

MapReduce has three entities: worker, user, and

master. In [10], after classifying tasks based on QoS,

the ant colony algorithm has been used, in which ants

naturally find the optimal path for collecting food and

returning to the nest. This algorithm has been applied to

find the best and most optimal combination for

allocating resources to processes [10].

 The Round Robin algorithm

The Round Robin algorithm is the simplest load

balancing method that also provides tolerance for

simple errors. In this technique, multiple servers,

referred to as homogeneous identical servers, are

configured to provide similar services. These servers

are grouped under the same internet domain, with each

server having its own unique IP address on the

network.

When a user makes a request, the request is sent to a

DNS server to retrieve the IP address associated with

the domain name. The DNS server then selects one of

the obtained IP addresses and returns it to the user. In

subsequent requests, the DNS server provides the next

IP address, and this sequential and cyclic process

continues [11].

 Energy-Aware Load Balancing Algorithm

With the increasing demand for resources in the cloud

computing layer, the number of hardware also

increases, leading to an increase in energy

consumption. Energy consumption can be reduced by

decreasing the hardware requirements. Therefore, a

framework is needed to reduce energy consumption in

fog computing. In this article, an energy-efficient

framework was presented to reduce energy

consumption in the fog computing layer. Along with

this, this section includes an energy-aware load

balancing algorithm that will help reduce task

execution time. By reducing the execution time, system

performance can be improved, which will also help

reduce energy consumption and implementation costs.

The energy-aware load balancing algorithm for the

environment is provided below:

The LB-EA algorithm aims to reduce energy

consumption in fog computing by utilizing load

balancing techniques. This is particularly important in

scientific workflow applications, where there is a high

volume of data transfer that requires more hardware,

consequently increasing the energy demand. Proper

utilization of all fog nodes through LB-EA's load

balancing techniques can help optimize execution time

and cost, while also reducing energy consumption in

fog environments [5].

 Simulated Annealing (SA) Algorithm

The Simulated Annealing algorithm (SA) is a local

search method used to find a global optimal solution

for complex problems. The approach involves initially

heating an object to a high temperature and then slowly

cooling it down so that the system is almost always in a

thermodynamic equilibrium state. In equilibrium states,

the object has many configurations, each with a

specific merit. A random perturbation is applied to the

current configuration to obtain the next one, and its

corresponding merit is calculated. The SA procedure

begins by creating an initial mapping using a uniform

random distribution. This mapping is then modified in

a way similar to the genetic algorithm method, and the

new delay time is evaluated. If the new delay time is

better, it replaces the previous one; otherwise, a random

number between 0 and 1 is selected. This number is

then compared to Y. If RND < Y, the new mapping is

accepted and used as the starting point for the next

iteration. Otherwise, the previous delay time remains in

place. The system's temperature is then lowered, which

 Z.Haghbayan, Sh.Razaghzadeh Vol. 5, No. 2, 2023

22

makes weaker solutions less likely to be accepted. Up

to this point, one iteration of the SA process is

completed. This algorithm terminates when no change

in the delay time is observed for a specified number of

iterations or the system temperature reaches zero [12].

4. REVIEW OF LOAD BALANCING METHODS

IN FOG COMPUTING

 Researchers have discussed various approaches to

load balancing, where the basis of these approaches is

categorized into hardware-based and software-based

load balancing approaches. They have mentioned

different objectives that should be considered while

advancing towards load balancing techniques. In

summary, they described various load balancing

algorithms, including the Honey Bee Algorithm,

which achieves load balancing of tasks, and the

Genetic Algorithm- algorithm. Some researchers, in

order to implement their proposed framework,

utilized a modified version of the Honey Bee

Algorithm for load balancing. Their framework

resulted in faster attainment, improved utilization of

bandwidth, cost reduction, increased operational

efficiency, and enhanced computational requirements

for the Internet of Things (IoT) [13].

 Optimal scheduling algorithm without interruption

for load balancing in fog Computing.

The researchers utilized the Cloudsim simulation tool

for implementation of case in the fog environment.

This proposed framework can complete the tasks

without interruption within the given deadline,

enhance operational efficiency, and effectively

address the increasing demands of end users [14].

 Employing a Greedy Algorithm-based Work

Scheduling Approach for Achieving Load Balancing

and Reducing Workflow, Time, and Cost.

Greedy-based task scheduling has been widely

employed in several studies to improve the time

efficiency of rotations and minimize costs associated

with user-submitted tasks within specific time slots.

This algorithm employs a greedy approach by

selecting the most suitable resource based on its cost

and rotation time, utilizing a task priority formula.

Notably, this algorithm outperforms sequential

scheduling, yielding superior outcomes.

The experimental results demonstrated a statistically

significant improvement in the overall execution time

by up to 9% when utilizing the Min-Max algorithm

compared to the Min-Min approach, while

concurrently achieving an enhanced system

utilization rate compared to the Max-Min algorithm.

Furthermore, the total completion time and average

response time exhibited statistically significant

reductions of 7% and 9% respectively. Also, the

study revealed that the employed scheduling

algorithm incorporated specific constraints.

Consequently, a greedy approach was adopted for

activity selection within the algorithm. The results

demonstrated substantial enhancements in workflow,

time efficiency, and cost reduction for each task

feature [8].

 Dynamic resource allocation algorithms that integrate

available resources in the network for load balancing.

Researchers presented a systematic framework based

on the neural network of the human body as a model

for the features of cloud data centers. They

deliberated on the concept of an iterative game

strategy as a means of incentivization and supervision

for actively carrying out tasks. This game constitutes

an infinitely repeated game without a terminal stage.

They employed the Nase to compute the results,

aiming to achieve maximum capital efficiency. The

foundational Hadoop system framework was utilized

for implementing their proposed scheme. They

determined the SLA violation rate and the

corresponding completion time for various

workloads. Furthermore, they conducted a

comparative analysis between their algorithm and the

Min-Min algorithm, as well as the MBFD algorithm

[15].
The algorithm of virtual machine allocation for load

balancing and energy consumption reduction in data

centers, based on Particle Swarm Optimization (PSO)

and multi-resource allocation model

The researchers employed the total Euclidean

distance as the fitness function within the PSO

algorithm and subsequently compared the results with

results of MBFD and MBFH algorithms. The

CloudSim simulator has been utilized for executing

the plan [16].

 The developed strategy for load balancing, utilizing

the migration of virtual machines through an

algorithm inspired by the behavior of honey bees.

This approach guarantees that each node in the

system is efficiently utilized. The nodes are

characterized by two important criteria: total

migration time and service accessibility.

The researchers have utilized various algorithms,

including load balancing, task load balancing inspired

by honey bee behavior, and the concepts of migration

and virtualization, in the calculation of cloud resource

utilization [17].

Future Generation in Distributed Systems Journal Vol. 5, No. 2, 2023

23

Fig5. Flowchart of the Collective Financial Provisioning Algorithm

 Energy-Aware Virtual Machine Placement Algorithm

for Load Balancing.

The researchers have employed the task clustering

technique for load balancing, which aids in reducing

energy consumption in cloud data centers. The

proposed technique combines various small tasks

with large tasks to reduce the workload on virtual

machines. The proposed load balancing technique is

based on the MIN-MIN algorithm.

 Load Balancing Equilibrium Technique for Fog and

Cloud Computing Calculation Using Nature-Inspired

Algorithms.

Several different load balancing methods have been

proposed in previous studies for cloud computing. In

some of these studies, load balancing techniques have

been designed by drawing inspiration from existing

natural techniques such as particle swarm

optimization. The primary objective of these methods

is to reduce the challenges in the load balancing

process in cloud systems by leveraging the

experiences gained from nature.

 Virtual Machine Allocation Algorithm to Achieve

Load Balancing.

The Virtual Machine Allocation Algorithms Address

the Allocation of Resources to Devices. Virtual

Machine Allocation Strategies play a crucial role in

load balancing algorithms. In this paper, researchers

propose Virtual Machine Allocation Strategies aiming

to prioritize low-priority tasks (tasks with high time

constraints [18].

1. Begin

2. Arrival of New job

3. If(New job.deadline < all jobs running in host)

4. High priority job=New job

5. If (VM is available)

6. Allocate High priority job to that VM

7. Else

8. susend job selection of job for execution of high

priority job();

9. Suspend (Suspend job)

10. Allocate High priority job to VM form witch a job was

suspended

11. End if

12. Execution of all jobs running in the VM

13. If (completion of a job witch is running in VM)

14. Resume (Suspend job)

15. Allocate the resumed job to that VM

16. End if

17. Execution of resumed

18. End

 Z.Haghbayan, Sh.Razaghzadeh Vol. 5, No. 2, 2023

24

Table 1. Comparison of Load Balancing Algorithms in Cloud Computing

Algorithm Advantages Disadvantages

Minimum execution time - minimum

completion time

Simplicity of the response time

algorithm and fast execution

Creating starvation for long tasks and

addressing load imbalance on

resources

Maximum execution time - minimum

completion time

The simplicity of the algorithm, fast

execution and low response time

Creating starvation for short tasks and

addressing load imbalance on

resources

Minimum execution time
High execution speed and easy

implementation
Load imbalance on resources

Round-robin scheduling
Reasons and fairness of avoiding

starvation

Long execution time when dealing

with high workload volume

Honey Bee Scheduling Algorithm
Low execution time, achieving load

balance on resources
Use a coordinated number of variables

Particle Swarm Optimization Reducing execution time Neglecting cost considerations

Genetic Algorithm Intelligent Allocation
Neglecting job completion time and

cost

Ant Colony Algorithm

Relatively low execution time,

guaranteed convergence to optimum

solution

Poor performance in a large number

of resources, slow convergence speed

Simulated annealing algorithm Intelligent Allocation
Poor performance in a small number

of resources

6.CONCLUSION
Due to the increasing use of cloud computing and the

high volume of requests, achieving load balancing has

become a significant challenge. Consequently, there is

a need for appropriate and optimized algorithms to

establish load balancing. Some of the reasons behind

these challenges include the heterogeneity of resources

and the environment, task allocation methods, and the

growing importance of load balancing. Load balancing

also involves issues such as resource and task

management, which can be addressed by utilizing load

balancing algorithms. By solving these issues using

load balancing algorithms, costs and execution time can

be reduced, and operational energy and capacity can be

improved. Therefore, extensive research has been

conducted to enhance and utilize load balancing

algorithms. In this paper, we examine and evaluate

various types of load balancing algorithms and classify

them accordingly. This classification enables us to

compare and investigate load balancing algorithms and

utilize them in the paper. Furthermore, we have

presented the applications and features of load

balancing techniques. This organized classification can

be beneficial for researchers and developers to expand

their ideas on load balancing algorithms in fog

computing. Different load balancing algorithms have

been discussed in this paper based on their strategies in

dynamic environments. In the future and upcoming

works, these load balancing algorithms can be utilized

with existing technologies, as observed in numerous

applications such as online gaming, video streaming,

and social applications that use load balancing

algorithms for social welfare purposes.

With the rapid proliferation of sensors, this technology

will gain special importance. The technology is

characterized by high demand in almost every field. By

employing various advanced techniques, we can

achieve load balancing and improve its efficiency.

REFERENCES

[1]. L. Atzori, A. Ier, G. Morabito, “The internet of

things: A survey. Computer networks,”, Computer

Networks, vol. 54, no. 15, 2010.

[2]. H.Chen, F.Wang, N.Helian, G.Akanmu, “User-

priority guided Min-Min scheduling algorithm for

load balancing in cloud computing. ”, In 2013

National Conference on Parallel computing

technologies (PARCOMPTECH);pp. 1-8, IEEE,

February.2013.

[3]. S.P.Singh, R.Kumar, A.Sharma, A. Nayyar, “

Leveraging energy‐efficient load balancing

algorithms in fog computing. ”, Concurrency and

Computation: Practice and Experience, vol. 34, no.13,

2022 .

[4]. F.Bonomi, R.Milito, J. Zh, & S.Addepalli, “ Fog

computing and its role in the internet of things. ”,

In Proceedings of the first edition of the MCC

workshop on Mobile cloud computing, pp. 13-16,

August .2012.

[5]. M.Kaur & R.Aron, “Energy-aware load balancing

in fog cloud computing.”, In Materials Today:

Proceedings, 2021.

[6]. G.Ming & H.Li , “An improved algorithm based on

max-min for cloud task scheduling.”, Recent

Advances in Computer Science and Information

Engineering; Volume 2, p.p. 217-223, 2012.

[7]. S.Mohapatra, S.Mohanty, K.Smruti Rekha, “

Analysis of different variants in round robin

algorithms for load balancing in cloud computing.

”; International Journal of Computer Applications,

https://ieeexplore.ieee.org/author/37087794561
https://ieeexplore.ieee.org/author/37557036000
https://ieeexplore.ieee.org/author/37295013600
https://ieeexplore.ieee.org/author/38574875100
https://onlinelibrary.wiley.com/authored-by/Singh/Simar+Preet
https://onlinelibrary.wiley.com/authored-by/Kumar/Rajesh
https://onlinelibrary.wiley.com/authored-by/Sharma/Anju
https://onlinelibrary.wiley.com/authored-by/Nayyar/Anand
https://link.springer.com/chapter/10.1007/978-3-642-25789-6_32#auth-Gao-Ming
https://link.springer.com/chapter/10.1007/978-3-642-25789-6_32#auth-Hao-Li
https://www.researchgate.net/profile/Subasish-Mohapatra?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Subhadarshini-Mohanty-2060744550?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/K-Smruti-Rekha-2037102339?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19

Future Generation in Distributed Systems Journal Vol. 5, No. 2, 2023

25

vol. 69, no. 22, pp.17-21, 2013.

[8]. S.Pandey, Li.Wu, S,M,Guru, R,Buyya, “A particle

swarm optimization-based heuristic for scheduling

workflow applications in cloud computing

environments.”, In 2010 24th IEEE international

conference on advanced information networking and

applications, pp. 400-407, ,April.2012.

[9]. Zhao, C., Zhang, S., Liu, Q., Xie, J., & Hu,

“Independent tasks scheduling based on genetic

algorithm in cloud computing.”, September., In

2009 5th international conference on wireless

communications, networking and mobile computing

(pp. 1-4). IEEE, 2009.

[10]. L.Zhu, Q.Li & L.He, “Study on cloud computing

resource scheduling strategy based on the ant

colony optimization algorithm. ”, International

Journal of Computer Science Issues (IJCSI), 9(5), 54,

2012.

[11]. A.Choudhary, M. C. Govil, G.Singh, L.

Awasthi, E.Pilli, “Task clustering-based energy-

aware workflow scheduling in cloud environment.

” , IEEE 20thInternational Conference on High

Performance Computing and Communications

(HPCC)) (pp. 968-973). IEEE, June.2018.

[12]. G.Gan, T.Huang, S.Gao, “Genetic simulated

annealing algorithm for task scheduling based on

cloud computing environment. ”, In 2010

International Conference on Intelligent Computing

and Integrated Systems, pp. 60-63. IEEE, October.

2010.

[13]. M.Aldağ, Y.Kırsal & S.Ülker , “An architecture for

load balancing techniques for fog computing

environment. ”, , International Journal of Computer

Science and Communication, vol. 8, no. 2, pp. 43-49,

2015.

[14]. M.Verma, N.Bhardwaj, & A.Yadav, “Real time

efficient scheduling algorithm for load balancing

in fog computing environment. ”, ,”Int. J. Inf.

Technol. Comput. Sci, vol. 8, no. 4, pp. 1-10, 2016.

[15]. Y.Sun., & N.Zhang, “ A resource-sharing model

based on a repeated game in fog computing. ”,

Saudi journal of biological sciences, vol. 24, no. 3,

pp. 687-694, 2017.

[16]. A.Xiong and C.Xu, “ Energy efficient multiresource

allocation of virtual machine based on PSO in

cloud data center. ”, ”Mathematical Problems in

Engineering, 2014.

[17]. M.Mukhija, “A resourceful technique for virtual

machine migration in fog computing.”,

International Journal of Innovative Science and

Research Technology, 6(6), 167-170, 2016.

[18]. A. Saraswathi, Y.R.A. Kalaashri, S. Padmavathi,

“Dynamic resource allocation scheme in cloud

computing.”, Procedia Computer Science, 47, pp. 30-

36, 2015.

https://ieeexplore.ieee.org/author/37665166300
https://ieeexplore.ieee.org/author/37713318000
https://ieeexplore.ieee.org/author/37428563500
https://ieeexplore.ieee.org/author/37267557900
https://www.semanticscholar.org/author/Linan-Zhu/48324081
https://www.semanticscholar.org/author/Qingshui-Li/8194180
https://www.semanticscholar.org/author/Lingna-He/2112501046
https://www.semanticscholar.org/author/Anita-Choudhary/49504398
https://www.semanticscholar.org/author/M.-C.-Govil/3034558
https://www.semanticscholar.org/author/Girdhari-Singh/39528728
https://www.semanticscholar.org/author/L.-Awasthi/2498944
https://www.semanticscholar.org/author/L.-Awasthi/2498944
https://www.semanticscholar.org/author/E.-Pilli/2371703
https://ieeexplore.ieee.org/author/37589159600
https://ieeexplore.ieee.org/author/37401324500
https://ieeexplore.ieee.org/author/37596428000
https://link.springer.com/article/10.1007/s11227-022-04345-2#auth-Mehmet-Alda_-Aff1
https://link.springer.com/article/10.1007/s11227-022-04345-2#auth-Y_nal-K_rsal-Aff2
https://link.springer.com/article/10.1007/s11227-022-04345-2#auth-Sad_k-_lker-Aff2
https://www.researchgate.net/scientific-contributions/Manisha-Verma-2088169004?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Neelam-Bhardwaj-2105605766?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/profile/Arun-Yadav-2?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.semanticscholar.org/author/A.-Saraswathi/1944792327
https://www.semanticscholar.org/author/Y.R.A.-Kalaashri/69924022
https://www.semanticscholar.org/author/S.-Padmavathi/143898759

